Measurements and numerical study of laminar burning velocities of iso-butanol and ethanol blends

F. Rau, S. Hartl, S. Voss, C. Hasse, D. Trimis

Florian Rau
25. September 2014, Berlin
Agenda

1. Motivation
2. Description of Heat Flux Burner Test Rig
 1. Flow Sheet
 2. Solubility
 3. Hydraulic Accumulator
 4. Uncertainty Estimation
3. Validation of Test Rig
 1. Iso-Octane
 2. Ethanol
4. Laminar Burning Velocity of Alcohol/Iso-Octane Blends
 1. Ethanol/Iso-Octane
 2. Iso-Butanol/Iso-Octane
1. Motivation

Global biofuel production

![Bar chart showing global biofuel production from 2000 to 2011. The chart indicates a steady increase in production from year to year. The production is divided between biodiesel (red) and ethanol (blue).]
1. Motivation

Blending mandates and targets in key countries

* % estimated from volumetric quota set under the RFS2
** In some provinces
*** Federal: 5% ethanol, 2% biodiesel; up to 8.5% ethanol in some provinces

2. Description of Heat Flux Burner Test Rig

Flow Sheet
2. Description of Heat Flux Burner Test Rig

Solubility

Temperature: 298.15 K
2. Description of Heat Flux Burner Test Rig

Hydraulic Accumulator

Bubble accumulator
+ High reaction rate
- Durability of surface area

Membrane accumulator
+ High pressure
- Volume ratio
- Volume flow

Piston accumulator
+ Volume ratio
+ Sealing

TU Bergakademie Freiberg | Institute of Thermal Engineering | Chair of Gas and Heat Technology | Gustav-Zeuner-Straße 7|
3. Description of Heat Flux Burner Test Rig

Uncertainty Estimation of Burning Velocity

\[
u_{v_g} = \sqrt{\left(\frac{\partial v_g}{\partial m_F} \right)^2 u_v^2 + \left(\frac{\partial v_g}{\partial \dot{V}_{Air}} \right)^2 u_{\dot{V}_{Air}}^2 + \left(\frac{\partial v_g}{\partial T_F} \right)^2 u_T^2 + \left(\frac{\partial v_g}{\partial p_F} \right)^2 u_p^2 + \left(\frac{\partial v_g}{\partial d} \right)^2 u_d^2}
\]

\[
u_{S_{Lr}} = \frac{s(\overline{C})}{m}
\]

\[
u_{S_L} = k \sqrt{u_{v_g}^2 + u_{S_{Lr}}^2}
\]

3. Description of Heat Flux Burner Test Rig

Uncertainty Estimation of Equivalence Ratio

\[u_\phi = \sqrt{\left(\frac{\partial \phi}{\partial \dot{m}_F} \right)^2 u_{\dot{m}_F}^2 + \left(\frac{\partial \phi}{\partial \dot{V}_{Air}} \right)^2 u_{\dot{V}_{Air}}^2} \]

3. Validation of Test Rig

Iso-Octane

Temperature: 298 K
Pressure: 1 atm

3. Validation of Test Rig

Ethanol

Temperature: 298 K
Pressure: 1 atm

3. Validation of Test Rig

Ethanol

Temperature: 373 K
Pressure: 1 atm
4. Blends

Ethanol\Iso-octane Blend

Temperature: 373 K
Pressure: 1 atm

4. Blends

Ethanol\Iso-octane Blend

Pressure: 1 atm
Equivalence ratio: 1.0

4. Blends

Butanol

Temperature: 373 K
Pressure: 1 atm
4. Blends

Butanol

Temperature: 373 K
Pressure: 1 atm
Equivalence ratio: 1.0
Thank you for your Attention.

Acknowledgments

The authors kindly acknowledge the financial support by the Saxon Ministry of Science and Fine Arts and the European Union in the project “BioRedKat” (project number 100097882) and by the Federal Ministry of Education and Research of Germany in the framework of “Virtuhcon” (project number 03Z2FN11).
Literature

- D. Bradley, M. Lawes, and M. S. Mansour, “Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa” Combust. and Flame 2009.